Spectral Flux Density - Collimated Beam

Collimated Beam

For the present purposes, the light from a star, and for some particular purposes, the light of the sun, can be treated as a practically collimated beam, but apart from this, a collimated beam is rarely if ever found in nature, though artificially produced beams can be very nearly collimated. The spectral radiance (or specific intensity) is suitable for the description of an uncollimated radiative field. The integrals of spectral radiance (or specific intensity) with respect to solid angle, used above, are singular for exactly collimated beams, or may be viewed as Dirac delta functions. Therefore the specific radiative intenstity is unsuitable for the description of a collimated beam, while spectral flux density is suitable for that purpose. At a point within a collimated beam, the spectral flux density vector has a value equal to the Poynting vector, a quantity defined in the classical Maxwell theory of electromagnetic radiation.

Read more about this topic:  Spectral Flux Density

Famous quotes containing the word beam:

    What do we plant when we plant the tree?
    We plant the ship that will cross the sea,
    We plant the mast to carry the sails,
    We plant the planks to withstand the gales—
    The keel, the keelson, and beam and knee—
    We plant the ship when we plant the tree.
    Henry Abbey (1842–1911)