Limitations of Algorithm
This algorithm, as mentioned above, is very efficient for numbers of the form re±s, for r and s relatively small. It is also efficient for any integers which can be represented as a polynomial with small coefficients. This includes integers of the more general form a're±b'sf, and also for many integers whose binary representation has low Hamming weight. The reason for this is as follows: The Number Field Sieve performs sieving in two different fields. The first field is usually the rationals. The second is a higher degree field. The efficiency of the algorithm strongly depends on the norms of certain elements in these fields. When an integer can be represented as a polynomial with small coefficients, the norms that arise are much smaller than those that arise when an integer is represented by a general polynomial. The reason is that a general polynomial will have much larger coefficients, and the norms will be correspondingly larger. The algorithm attempts to factor these norms over a fixed set of prime numbers. When the norms are smaller, these numbers are more likely to factor.
Read more about this topic: Special Number Field Sieve
Famous quotes containing the word limitations:
“Growing up means letting go of the dearest megalomaniacal dreams of our childhood. Growing up means knowing they cant be fulfilled. Growing up means gaining the wisdom and skills to get what we want within the limitations imposed by realitya reality which consists of diminished powers, restricted freedoms and, with the people we love, imperfect connections.”
—Judith Viorst (20th century)