Environment
There are several unique differences between the properties of materials in space compared to the same materials on the Earth. These differences can be exploited to produce unique or improved manufacturing techniques.
- The microgravity environment allows control of convection in liquids or gasses, and the elimination of sedimentation. Diffusion becomes the primary means of material mixing, allowing otherwise immiscible materials to be intermixed. The environment allows enhanced growth of larger, higher-quality crystals in solution.
- The ultraclean vacuum of space allows the creation of very pure materials and objects. The use of vapor deposition can be used to build up materials layer by layer, free from defects.
- Surface tension causes liquids in microgravity to form perfectly round spheres. This can cause problems when trying to pump liquids through a conduit, but it is very useful when perfect spheres of consistent size are needed for an application.
- Space can provide readily available extremes of heat and cold. Sunlight can be focused to concentrate enough heat to melt the materials, while objects kept in perpetual shade are exposed to temperatures close to absolute zero. The temperature gradient can be exploited to produce strong, glassy materials.
Read more about this topic: Space Manufacturing
Famous quotes containing the word environment:
“In a land which is fully settled, most men must accept their local environment or try to change it by political means; only the exceptionally gifted or adventurous can leave to seek his fortune elsewhere. In America, on the other hand, to move on and make a fresh start somewhere else is still the normal reaction to dissatisfaction and failure.”
—W.H. (Wystan Hugh)
“Today the young actors regard their environment with rage and disgust. They regard their Master not as disciples regard their Master, but as slaves regard their Master.”
—Judith Malina (b. 1926)
“... several generations of slum environment will produce a slum heredity ...”
—Albion Fellows Bacon (18651933)