Space Group

In mathematics and geometry, a space group is a symmetry group, usually for three dimensions, that divides space into discrete repeatable domains.

In three dimensions, there are 219 distinct types, or counted as 230 if chiral copies are considered distinct. Space groups are also studied in dimensions other than 3 where they are sometimes called Bieberbach groups, and are discrete cocompact groups of isometries of an oriented Euclidean space.

In crystallography, they are also called the crystallographic or Fedorov groups, and represent a description of the symmetry of the crystal. A definitive source regarding 3-dimensional space groups is the International Tables for Crystallography (Hahn (2002)).

Read more about Space Group:  History, Elements of A Space Group, Notation For Space Groups, Classification Systems For Space Groups, Table of Space Groups in 3 Dimensions

Famous quotes containing the words space and/or group:

    No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.
    Isaac Newton (1642–1727)

    No other group in America has so had their identity socialized out of existence as have black women.... When black people are talked about the focus tends to be on black men; and when women are talked about the focus tends to be on white women.
    bell hooks (b. c. 1955)