Effect of Power Losses
As we have seen, in order to create a soliton it is necessary to have the right power when it is generated. If there are no losses in the medium, then we know that the soliton will keep on propagating forever without changing shape (1st order) or changing its shape periodically (higher orders). Unfortunately any medium introduces losses, so the actual behavior of power will be in the form:
this is a serious problem for temporal solitons propagating in fibers for several kilometers. Let us consider what happens for the temporal soliton, generalization to the spatial ones is immediate. We have proved that the relationship between power and impulse length is:
if the power changes, the only thing that can change in the second part of the relationship is . if we add losses to the power and solve the relationship in terms of we get:
the width of the impulse grows exponentially to balance the losses! this relationship is true as long as the soliton exists, i.e. until this perturbation is small, so it must be otherwise we can not use the equations for solitons and we have to study standard linear dispersion. If we want to create a transmission system using optical fibers and solitons, we have to add optical amplifiers in order to limit the loss of power.
Read more about this topic: Soliton (optics)
Famous quotes containing the words effect, power and/or losses:
“The second [of Zenos arguments about motion] is the one called Achilles. This is to the effect that the slowest as it runs will never be caught by the quickest. For the pursuer must first reach the point from which the pursued departed, so that the slower must always be some distance in front.”
—Zeno Of Elea (c. 490430 B.C.)
“Unionism seldom, if ever, uses such power as it has to insure better work; almost always it devotes a large part of that power to safeguarding bad work.”
—H.L. (Henry Lewis)
“Hold back thy hours, dark Night, till we have done;
The Day will come too soon.
Young maids will curse thee, if thou stealst away
And leavst their losses open to the day.
Stay, stay, and hide
The blushes of the bride.”
—Francis Beaumont (1584-1616)