Soliton - History

History

In 1834, John Scott Russell describes his wave of translation. The discovery is described here in Scott Russell's own words:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped – not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation. —

Scott Russell spent some time making practical and theoretical investigations of these waves. He built wave tanks at his home and noticed some key properties:

  • The waves are stable, and can travel over very large distances (normal waves would tend to either flatten out, or steepen and topple over)
  • The speed depends on the size of the wave, and its width on the depth of water.
  • Unlike normal waves they will never merge – so a small wave is overtaken by a large one, rather than the two combining.
  • If a wave is too big for the depth of water, it splits into two, one big and one small.

Scott Russell's experimental work seemed at odds with Isaac Newton's and Daniel Bernoulli's theories of hydrodynamics. George Biddell Airy and George Gabriel Stokes had difficulty accepting Scott Russell's experimental observations because they could not be explained by the existing water wave theories. Their contemporaries spent some time attempting to extend the theory but it would take until the 1870s before Joseph Boussinesq and Lord Rayleigh published a theoretical treatment and solutions. In 1895 Diederik Korteweg and Gustav de Vries provided what is now known as the Korteweg–de Vries equation, including solitary wave and periodic cnoidal wave solutions.

In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first demonstrated soliton behaviour in media subject to the Korteweg–de Vries equation (KdV equation) in a computational investigation using a finite difference approach. They also showed how this behavior explained the puzzling earlier work of Fermi, Pasta and Ulam.

In 1967, Gardner, Greene, Kruskal and Miura discovered an inverse scattering transform enabling analytical solution of the KdV equation. The work of Peter Lax on Lax pairs and the Lax equation has since extended this to solution of many related soliton-generating systems.

Read more about this topic:  Soliton

Famous quotes containing the word history:

    History is not what you thought. It is what you can remember. All other history defeats itself.
    In Beverly Hills ... they don’t throw their garbage away. They make it into television shows.
    Idealism is the despot of thought, just as politics is the despot of will.
    Mikhail Bakunin (1814–1876)

    Humankind has understood history as a series of battles because, to this day, it regards conflict as the central facet of life.
    Anton Pavlovich Chekhov (1860–1904)

    We said that the history of mankind depicts man; in the same way one can maintain that the history of science is science itself.
    Johann Wolfgang Von Goethe (1749–1832)