Solid Oxide Fuel Cell - Polarizations

Polarizations

Polarizations, or overpotentials, are losses in voltage due to imperfections in materials, microstructure, and design of the fuel cell. Polarizations result from ohmic resistance of oxygen ions conducting through the electrolyte (iRΩ), electrochemical activation barriers at the anode and cathode, and finally concentration polarizations due to inability of gases to diffuse at high rates through the porous anode and cathode (shown as ηA for the anode and ηC for cathode). The cell voltage can be calculated using the following equation:

where is the Nernst potential of the reactants and R represents the Thévenin equivalent resistance value of the electrically conducting portions of the cell. and account for the remaining difference between the actual cell voltage and the Nernst potential. In SOFCs, it is often important to focus on the ohmic and concentration polarizations since high operating temperatures experience little activation polarization. However, as the lower limit of SOFC operating temperature is approached (~600 °C), these polarizations do become important.

Above mentioned equation is used for determining the SOFC voltage (in fact for fuel cell voltage in general). This approach results in good agreement with particular experimental data (for which adequate factors were obtained) and poor agreement for other than original experimental working parameters. Moreover, most of the equations used require the addition of numerous factors which are difficult or impossible to determine. It makes very difficult any optimizing process of the SOFC working parameters as well as design architecture configuration selection. Because of those circumstances a few other equations were proposed:

E_{SOFC} = \frac{E_{max}-i_{max}\cdot\eta_f\cdot r_1}{\frac{r_1}{r_2}\cdot\left( 1-\eta_f \right) + 1}

where: – cell voltage, – maximum voltage given by the Nernst equation, – maximum current density (for given fuel flow), – fuel utilization factor, – ionic specific resistance of the electrolyte, and – electric specific resistance of the electrolyte.

There are many parameters which impact cell working conditions, e.g. electrolyte material, electrolyte thickness, cell temperature, inlet and outlet gas compositions at anode and cathode, and electrode porosity, just to name some. The flow in these systems is often calculated using the Navier-stokes equation.

Read more about this topic:  Solid Oxide Fuel Cell