Definition
Let A be a nonzero m×n matrix over a principal ideal domain R. There exist invertible and -matrices S, T so that the product S A T is
and the diagonal elements satisfy . This is the Smith normal form of the matrix A. The elements are unique up to multiplication by a unit and are called the elementary divisors, invariants, or invariant factors. They can be computed (up to multiplication by a unit) as
where (called i-th determinant divisor) equals the greatest common divisor of all minors of the matrix A.
Read more about this topic: Smith Normal Form
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)