Smith Normal Form - Definition

Definition

Let A be a nonzero m×n matrix over a principal ideal domain R. There exist invertible and -matrices S, T so that the product S A T is


\begin{pmatrix}
\alpha_1 & 0 & 0 & & \cdots & & 0 \\
0 & \alpha_2 & 0 & & \cdots & & 0 \\
0 & 0 & \ddots & & & & 0\\
\vdots & & & \alpha_r & & & \vdots \\ & & & & 0 & & \\ & & & & & \ddots & \\
0 & & & \cdots & & & 0
\end{pmatrix}.

and the diagonal elements satisfy . This is the Smith normal form of the matrix A. The elements are unique up to multiplication by a unit and are called the elementary divisors, invariants, or invariant factors. They can be computed (up to multiplication by a unit) as

where (called i-th determinant divisor) equals the greatest common divisor of all minors of the matrix A.

Read more about this topic:  Smith Normal Form

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)