Smith Normal Form - Definition

Definition

Let A be a nonzero m×n matrix over a principal ideal domain R. There exist invertible and -matrices S, T so that the product S A T is


\begin{pmatrix}
\alpha_1 & 0 & 0 & & \cdots & & 0 \\
0 & \alpha_2 & 0 & & \cdots & & 0 \\
0 & 0 & \ddots & & & & 0\\
\vdots & & & \alpha_r & & & \vdots \\ & & & & 0 & & \\ & & & & & \ddots & \\
0 & & & \cdots & & & 0
\end{pmatrix}.

and the diagonal elements satisfy . This is the Smith normal form of the matrix A. The elements are unique up to multiplication by a unit and are called the elementary divisors, invariants, or invariant factors. They can be computed (up to multiplication by a unit) as

where (called i-th determinant divisor) equals the greatest common divisor of all minors of the matrix A.

Read more about this topic:  Smith Normal Form

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)