Smith Normal Form - Definition

Definition

Let A be a nonzero m×n matrix over a principal ideal domain R. There exist invertible and -matrices S, T so that the product S A T is


\begin{pmatrix}
\alpha_1 & 0 & 0 & & \cdots & & 0 \\
0 & \alpha_2 & 0 & & \cdots & & 0 \\
0 & 0 & \ddots & & & & 0\\
\vdots & & & \alpha_r & & & \vdots \\ & & & & 0 & & \\ & & & & & \ddots & \\
0 & & & \cdots & & & 0
\end{pmatrix}.

and the diagonal elements satisfy . This is the Smith normal form of the matrix A. The elements are unique up to multiplication by a unit and are called the elementary divisors, invariants, or invariant factors. They can be computed (up to multiplication by a unit) as

where (called i-th determinant divisor) equals the greatest common divisor of all minors of the matrix A.

Read more about this topic:  Smith Normal Form

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)