Skolem Theories
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. |
In general, if is a theory and for each formula with free variables there is a Skolem function, then is called a Skolem theory. For example, by the above, arithmetic with the Axiom of Choice is a Skolem theory.
Every Skolem theory is model complete, i.e. every substructure of a model is an elementary substructure. Given a model M of a Skolem theory T, the smallest substructure containing a certain set A is called the Skolem hull of A. The Skolem hull of A is an atomic prime model over A.
Read more about this topic: Skolem Normal Form
Famous quotes containing the word theories:
“Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.”
—Thomas Henry Huxley (182595)