Formal Definition
The terms and derivations in this system can also be more formally defined:
Terms: The set T of terms is defined recursively by the following rules.
- S, K, and I are terms.
- If τ1 and τ2 are terms, then (τ1τ2) is a term.
- Nothing is a term if not required to be so by the first two rules.
Derivations: A derivation is a finite sequence of terms defined recursively by the following rules (where all Greek letters represent valid terms or expressions with fully balanced parentheses):
- If Δ is a derivation ending in an expression of the form α(Iβ)ι, then Δ followed by the term αβι is a derivation.
- If Δ is a derivation ending in an expression of the form α((Kβ)γ)ι, then Δ followed by the term αβι is a derivation.
- If Δ is a derivation ending in an expression of the form α(((Sβ)γ)δ)ι, then Δ followed by the term α((βδ)(γδ))ι is a derivation.
Assuming a sequence is a valid derivation to begin with, it can be extended using these rules.
Read more about this topic: SKI Combinator Calculus
Famous quotes containing the words formal and/or definition:
“There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.”
—Sara Lawrence Lightfoot (20th century)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)