Skew-symmetric Matrix - Skew-symmetrizable Matrix

Skew-symmetrizable Matrix

An n-by-n matrix A is said to be skew-symmetrizable if there exist an invertible diagonal matrix D and skew-symmetric matrix S such that A = DS. For real n-by-n matrices, sometimes the condition for D to have positive entries is added.

Read more about this topic:  Skew-symmetric Matrix

Famous quotes containing the word matrix:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)