Skew-Hermitian Matrix
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or antihermitian if its conjugate transpose is equal to its negative. That is, the matrix A is skew-Hermitian if it satisfies the relation
where denotes the conjugate transpose of a matrix. In component form, this means that
for all i and j, where ai,j is the i,j-th entry of A, and the overline denotes complex conjugation.
Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. All skew-Hermitian n×n matrices form the u(n) Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm.
Read more about Skew-Hermitian Matrix: Example, Properties
Famous quotes containing the word matrix:
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)