Site-specific Recombination

Site-specific recombination, also known as conservative site-specific recombination, is a type of genetic recombination in which DNA strand exchange takes place between segments possessing only a limited degree of sequence homology. Site-specific recombinases (SSRs)perform rearrangements of DNA segments by recognizing and binding to short DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved and rejoin the DNA strands. While in some site-specific recombination systems just a recombinase enzyme and the recombination sites is enough to perform all these reactions, in other systems a number of accessory proteins and/or accessory sites are also needed. Multiple genome modification strategies, among these Recombinase-mediated cassette exchange (RMCE), an advanced approach for the targeted introduction of transcription units into predetermined genomic loci, rely on the capacities of SSRs.

Site-specific recombination systems are highly specific, fast and efficient, even when faced with complex eukaryotic genomes. They are employed in a variety of cellular processes, including bacterial genome replication, differentiation and pathogenesis, and movement of mobile genetic elements (Nash 1996). For the same reasons, they present a potential basis for the development of genetic engineering tools.

Recombination sites are typically between 30 and 200 nucleotides in length and consist of two motifs with a partial inverted-repeat symmetry, to which the recombinase binds, and which flank a central crossover sequence at which the recombination takes place. The pairs of sites between which the recombination occurs are usually identical, but there are exceptions (e.g. attP and attB of λ integrase, see lambda phage).

Read more about Site-specific Recombination:  Classification: Tyrosine- vs. Serine- Recombinases, Mechanism, See Also