Sinusoidal Plane-wave Solutions of The Electromagnetic Wave Equation

Sinusoidal Plane-wave Solutions Of The Electromagnetic Wave Equation

Sinusoidal plane-wave solutions are particular solutions to the electromagnetic wave equation.

The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations.

The treatment in this article is classical but, because of the generality of Maxwell's equations for electrodynamics, the treatment can be converted into the quantum mechanical treatment with only a reinterpretation of classical quantities (aside from the quantum mechanical treatment needed for charge and current densities).

The reinterpretation is based on the theories of Max Planck and the interpretations by Albert Einstein of those theories and of other experiments. The quantum generalization of the classical treatment can be found in the articles on Photon polarization and Photon dynamics in the double-slit experiment.

Read more about Sinusoidal Plane-wave Solutions Of The Electromagnetic Wave Equation:  Explanation, Plane Waves

Famous quotes containing the words solutions, wave and/or equation:

    The anorexic prefigures this culture in rather a poetic fashion by trying to keep it at bay. He refuses lack. He says: I lack nothing, therefore I shall not eat. With the overweight person, it is the opposite: he refuses fullness, repletion. He says, I lack everything, so I will eat anything at all. The anorexic staves off lack by emptiness, the overweight person staves off fullness by excess. Both are homeopathic final solutions, solutions by extermination.
    Jean Baudrillard (b. 1929)

    Through this broad street, restless ever,
    Ebbs and flows a human tide,
    Wave on wave a living river;
    Wealth and fashion side by side;
    Toiler, idler, slave and master, in the same quick current glide.
    John Greenleaf Whittier (1807–1892)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)