Singular Value Decomposition - Bounded Operators On Hilbert Spaces

Bounded Operators On Hilbert Spaces

The factorization can be extended to a bounded operator M on a separable Hilbert space H. Namely, for any bounded operator M, there exist a partial isometry U, a unitary V, a measure space (X, μ), and a non-negative measurable f such that

where is the multiplication by f on L2(X, μ).

This can be shown by mimicking the linear algebraic argument for the matricial case above. VTf V* is the unique positive square root of M*M, as given by the Borel functional calculus for self adjoint operators. The reason why U need not be unitary is because, unlike the finite dimensional case, given an isometry U1 with nontrivial kernel, a suitable U2 may not be found such that

is a unitary operator.

As for matrices, the singular value factorization is equivalent to the polar decomposition for operators: we can simply write

and notice that U V* is still a partial isometry while VTf V* is positive.

Read more about this topic:  Singular Value Decomposition

Famous quotes containing the words bounded and/or spaces:

    Me, what’s that after all? An arbitrary limitation of being bounded by the people before and after and on either side. Where they leave off, I begin, and vice versa.
    Russell Hoban (b. 1925)

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)