There is a functor |•|: S → CGHaus called the geometric realization taking a simplicial set X to its corresponding realization in the category of compactly-generated Hausdorff topological spaces.
This larger category is used as the target of the functor because, in particular, a product of simplicial sets
is realized as a product
of the corresponding topological spaces, where denotes the Kelley space product. To define the realization functor, we first define it on n-simplices Δn as the corresponding topological n-simplex |Δn|. The definition then naturally extends to any simplicial set X by setting
- |X| = limΔn → X |Δn|
where the colimit is taken over the n-simplex category of X. The geometric realization is functorial on S.
Read more about this topic: Simplicial Set
Famous quotes containing the words geometric and/or realization:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“The rush to books and universities is like the rush to the public house. People want to drown their realization of the difficulties of living properly in this grotesque contemporary world, they want to forget their own deplorable inefficiency as artists in life.”
—Aldous Huxley (18941963)