Simplicial Set - Geometric Realization

There is a functor |•|: S CGHaus called the geometric realization taking a simplicial set X to its corresponding realization in the category of compactly-generated Hausdorff topological spaces.

This larger category is used as the target of the functor because, in particular, a product of simplicial sets

is realized as a product

of the corresponding topological spaces, where denotes the Kelley space product. To define the realization functor, we first define it on n-simplices Δn as the corresponding topological n-simplex |Δn|. The definition then naturally extends to any simplicial set X by setting

|X| = limΔn → X |Δn|

where the colimit is taken over the n-simplex category of X. The geometric realization is functorial on S.

Read more about this topic:  Simplicial Set

Famous quotes containing the words geometric and/or realization:

    New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.
    Roland Barthes (1915–1980)

    I believe in women; and in their right to their own best possibilities in every department of life. I believe that the methods of dress practiced among women are a marked hindrance to the realization of these possibilities, and should be scorned or persuaded out of society.
    Elizabeth Stuart Phelps (1844–1911)