Definition
There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. In research papers and advanced books signed measures are usually only allowed to take finite values, while undergraduate textbooks often allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures".
Given a measurable space (X, Σ), that is, a set X with a sigma algebra Σ on it, an extended signed measure is a function
such that and is sigma additive, that is, it satisfies the equality
for any sequence A1, A2, ..., An, ... of disjoint sets in Σ. One consequence is that any extended signed measure can take +∞ as value, or it can take −∞ as value, but both are not available. The expression ∞ − ∞ is undefined and must be avoided.
A finite signed measure is defined in the same way, except that it is only allowed to take real values. That is, it cannot take +∞ or −∞.
Finite signed measures form a vector space, while extended signed measures are not even closed under addition, which makes them rather hard to work with. On the other hand, measures are extended signed measures, but are not in general finite signed measures.
Read more about this topic: Signed Measure
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)