Definition
There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. In research papers and advanced books signed measures are usually only allowed to take finite values, while undergraduate textbooks often allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures".
Given a measurable space (X, Σ), that is, a set X with a sigma algebra Σ on it, an extended signed measure is a function
such that and is sigma additive, that is, it satisfies the equality
for any sequence A1, A2, ..., An, ... of disjoint sets in Σ. One consequence is that any extended signed measure can take +∞ as value, or it can take −∞ as value, but both are not available. The expression ∞ − ∞ is undefined and must be avoided.
A finite signed measure is defined in the same way, except that it is only allowed to take real values. That is, it cannot take +∞ or −∞.
Finite signed measures form a vector space, while extended signed measures are not even closed under addition, which makes them rather hard to work with. On the other hand, measures are extended signed measures, but are not in general finite signed measures.
Read more about this topic: Signed Measure
Famous quotes containing the word definition:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)