Signal Recognition Particle RNA - Discovery

Discovery

SRP RNA was first detected in avian and murine oncogenic RNA (ocorna) virus particles. Subsequently, SRP RNA was found to be a stable component of uninfected HeLa cells where it associated with membrane and polysome fractions. In 1980, cell biologists purified from canine pancreas an 11S "signal recognition protein" (fortuitously also abbreviated "SRP") which promoted the translocation of secretory proteins across the membrane of the endoplasmic reticulum. It was then discovered that SRP contained an RNA component. Comparing the SRP RNA genes from different species revealed helix 8 of the SRP RNA to be highly conserved in all domains of life. The regions near the 5'- and 3'-ends of the mammalian SRP RNA are similar to the dominant Alu family of middle repetitive sequences of the human genome. It is now understood that Alu DNA originated from SRP RNA by excision of the central SRP RNA-specific (S) fragment, followed by reverse transcription and integration into multiple sites of the human chromosomes. SRP RNAs have been identified also in some organelles, for example in the plastid SRPs of many photosynthetic organisms.

Read more about this topic:  Signal Recognition Particle RNA

Famous quotes containing the word discovery:

    However backwards the world has been in former ages in the discovery of such points as GOD never meant us to know,—we have been more successful in our own days:Mthousands can trace out now the impressions of this divine intercourse in themselves, from the first moment they received it, and with such distinct intelligence of its progress and workings, as to require no evidence of its truth.
    Laurence Sterne (1713–1768)

    There is a great discovery still to be made in literature, that of paying literary men by the quantity they do not write.
    Thomas Carlyle (1795–1881)

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)