Signal-to-noise Ratio - Improving SNR in Practice

Improving SNR in Practice

All real measurements are disturbed by noise. This includes electronic noise, but can also include external events that affect the measured phenomenon — wind, vibrations, gravitational attraction of the moon, variations of temperature, variations of humidity, etc., depending on what is measured and of the sensitivity of the device. It is often possible to reduce the noise by controlling the environment. Otherwise, when the characteristics of the noise are known and are different from the signals, it is possible to filter it or to process the signal.

For example, it is sometimes possible to use a lock-in amplifier to modulate and confine the signal within a very narrow bandwidth and then filter the detected signal to the narrow band where it resides, thereby eliminating most of the broadband noise. When the signal is constant or periodic and the noise is random, it is possible to enhance the SNR by averaging the measurement. In this case the noise goes down as the square root of the number of averaged samples.

Read more about this topic:  Signal-to-noise Ratio

Famous quotes containing the words improving and/or practice:

    My only companions were the mice, which came to pick up the crumbs that had been left in those scraps of paper; still, as everywhere, pensioners on man, and not unwisely improving this elevated tract for their habitation. They nibbled what was for them; I nibbled what was for me.
    Henry David Thoreau (1817–1862)

    In the case of all other sciences, arts, skills, and crafts, everyone is convinced that a complex and laborious programme of learning and practice is necessary for competence. Yet when it comes to philosophy, there seems to be a currently prevailing prejudice to the effect that, although not everyone who has eyes and fingers, and is given leather and last, is at once in a position to make shoes, everyone nevertheless immediately understands how to philosophize.
    Georg Wilhelm Friedrich Hegel (1770–1831)