Shortest Path Problem

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

This is analogous to the problem of finding the shortest path between two intersections on a road map: the graph's vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of its road segment.

Read more about Shortest Path Problem:  Definition, Algorithms, Roadnetworks, Applications, Related Problems, Linear Programming Formulation

Famous quotes containing the words shortest, path and/or problem:

    The shortest route is not the most direct one, but rather the one where the most favorable winds swell our sails:Mthat is the lesson that seafarers teach. Not to abide by this lesson is to be obstinate: here, firmness of character is tainted with stupidity.
    Friedrich Nietzsche (1844–1900)

    Therefore our legends always come around to seeming legendary,
    A path decorated with our comings and goings. Or so I’ve been told.
    John Ashbery (b. 1927)

    The disesteem into which moralists have fallen is due at bottom to their failure to see that in an age like this one the function of the moralist is not to exhort men to be good but to elucidate what the good is. The problem of sanctions is secondary.
    Walter Lippmann (1889–1974)