Shear Strength (soil) - Drained Shear Strength

Drained Shear Strength

The drained shear strength is the shear strength of the soil when pore fluid pressures, generated during the course of shearing the soil, are able to dissipate during shearing. It also applies where no pore water exists in the soil (the soil is dry) and hence pore fluid pressures are negligible. It is commonly approximated using the Mohr-Coulomb equation. (It was called "Coulomb's equation" by Karl von Terzaghi in 1942.) (Terzaghi 1942) combined it with the principle of effective stress.

In terms of effective stresses, the shear strength is often approximated by:

= σ' tan(φ') + c'

Where σ' =(σ - u), is defined as the effective stress. σ is the total stress applied normal to the shear plane, and u is the pore water pressure acting on the same plane.

φ' = the effective stress friction angle, or the'angle of internal friction' after Coulomb friction. The coefficient of friction is equal to tan(φ'). Different values of friction angle can be defined, including the peak friction angle, φ'p, the critical state friction angle, φ'cv, or residual friction angle, φ'r.

c' = is called cohesion, however, it usually arises as a consequence of forcing a straight line to fit through measured values of (τ,σ')even though the data actually falls on a curve. The intercept of the straight line on the shear stress axis is called the cohesion. It is well known that the resulting intercept depends on the range of stresses considered: it is not a fundamental soil property. The curvature (nonlinearity) of the failure envelope occurs because the dilatancy of closely packed soil particles depends on confining pressure.

Read more about this topic:  Shear Strength (soil)

Famous quotes containing the words drained and/or strength:

    Before we drained out one another’s force
    With lies, self-denial, unspoken regret
    And the sick eyes that blame; before the divorce
    And the treachery.
    William Dewitt Snodgrass (b. 1926)

    He has his health, and ampler strength indeed
    Than most have of his age.
    William Shakespeare (1564–1616)