Set of Uniqueness - Complexity of Structure

Complexity of Structure

The first evidence that sets of uniqueness have complex structure came from the study of Cantor-like sets. Salem and Zygmund showed that a Cantor-like set with dissection ratio ξ is a set of uniqueness if and only if 1/ξ is a Pisot number, that is an algebraic integer with the property that all its conjugates (if any) are smaller than 1. This was the first demonstration that the property of being a set of uniqueness has to do with arithmetic properties and not just some concept of size (Nina Bary had proved the case of ξ rational -- the Cantor-like set is a set of uniqueness if and only if 1/ξ is an integer -- a few years earlier).

Since the 50s, much work has gone into formalizing this complexity. The family of sets of uniqueness, considered as a set inside the space of compact sets (see Hausdorff distance), was located inside the analytical hierarchy. A crucial part in this research is played by the index of the set, which is an ordinal between 1 and ω1, first defined by Pyatetskii-Shapiro. Nowadays the research of sets of uniqueness is just as much a branch of descriptive set theory as it is of harmonic analysis. See the Kechris-Louveau book referenced below.

Read more about this topic:  Set Of Uniqueness

Famous quotes containing the words complexity of, complexity and/or structure:

    The price we pay for the complexity of life is too high. When you think of all the effort you have to put in—telephonic, technological and relational—to alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.
    Jean Baudrillard (b. 1929)

    The price we pay for the complexity of life is too high. When you think of all the effort you have to put in—telephonic, technological and relational—to alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.
    Jean Baudrillard (b. 1929)

    There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.
    Donald Davidson (b. 1917)