Integer Linear Program Formulation
The minimum set cover problem can be formulated as the following integer linear program (ILP).
minimize | (minimize the total cost) | ||
subject to | for all | (cover every element of the universe) | |
for all . | (every set is either in the set cover or not) |
This ILP belongs to the more general class of ILPs for covering problems. The integrality gap of this ILP is at most, so its relaxation gives a factor- approximation algorithm for the minimum set cover problem (where is the size of the universe).
Read more about this topic: Set Cover Problem
Famous quotes containing the words program and/or formulation:
“These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. I have 45 years. But, said the justice, you were forty-five when you appeared before me two years ago. SeƱor Judge, she replied proudly, drawing herself to her full height, I am not of those who are one thing today and another tomorrow!”
—State of New Mexico, U.S. public relief program (1935-1943)
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)