Serotonin Syndrome - Pathophysiology

Pathophysiology

Serotonin is a neurotransmitter involved in multiple states including aggression, pain, sleep, appetite, anxiety, depression, migraine, and vomiting. In humans the effects of excess serotonin were first noted in 1960 in patients receiving a monoamine oxidase inhibitor (MAOI) and tryptophan. The syndrome is caused by increased serotonin in the central nervous system. It was originally suspected that agonism of 5-HT1A receptors in central grey nuclei and the medulla was responsible for the development of the syndrome. Further study has determined that overstimulation of primarily the 5-HT2A receptors appears to contribute substantially to the condition. The 5-HT1A receptor may still contribute through a pharmacodynamic interaction in which increased synaptic concentrations of a serotonin agonist saturate all receptor subtypes. Additionally, noradrenergic CNS hyperactivity may play a role as CNS norepinephrine concentrations are increased in serotonin syndrome and levels appear to correlate with the clinical outcome. Other neurotransmitters may also play a role; NMDA receptor antagonists and GABA have been suggested as affecting the development of the syndrome. Serotonin toxicity is more pronounced following supra-therapeutic doses and overdoses, and they merge in a continuum with the toxic effects of overdose.

Read more about this topic:  Serotonin Syndrome