Series Expansion

In mathematics, a series expansion is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division). The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation.

There are several kinds of series expansions, such as:

  • Taylor series: A power series based on a function’s derivatives at a single point.
  • Maclaurin series: A special case of a Taylor series, centred at zero.
  • Laurent series: An extension of the Taylor series, allowing negative exponent values.
  • Dirichlet series: Used in number theory.
  • Fourier series: Describes periodical functions as a series of sine and cosine functions. In acoustics, e.g., the fundamental tone and the overtones together form an example of a Fourier series.
  • Legendre polynomials: Used in physics to describe an arbitrary electrical field as a superposition of a dipole field, a quadrupole field, an octupole field, etc.
  • Zernike polynomials: Used in optics to calculate aberrations of optical systems. Each term in the series describes a particular type of aberration.

For more details, refer to the articles mentioned.

Famous quotes containing the words series and/or expansion:

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)

    The fundamental steps of expansion that will open a person, over time, to the full flowering of his or her individuality are the same for both genders. But men and women are rarely in the same place struggling with the same questions at the same age.
    Gail Sheehy (20th century)