Separable Polynomial - Applications in Galois Theory

Applications in Galois Theory

Separable polynomials occur frequently in Galois theory.

For example, let P be an irreducible polynomial with integer coefficients and p be a prime number which does not divides the leading coefficient of P. Let Q be the polynomial over the finite field with p elements, which is obtained by reducing modulo p the coefficients of P. Then, if Q is separable (which is the case for every p but a finite number) then the degrees of the irreducible factors of Q are the lengths of the cycles of some permutation of the Galois group of P.

Another example: P being as above, a resolvent R for a group G is a polynomial whose coefficients are polynomials in the coefficients of p, which provides some information on the Galois group of P. More precisely, if R is separable and has a rational root then the Galois group of P is contained in G. For example, if D is the discriminant of P then is a resolvent for the alternating group. This resolvent is always separable if P is irreducible, but most resolvents are not always separable.

Read more about this topic:  Separable Polynomial

Famous quotes containing the word theory: