Definition and First Properties
Let K be a field. An associative K-algebra A is said to be separable if for every field extension the algebra is semisimple.
There is a classification theorem for separable algebras: separable algebras are the same as finite products of matrix algebras over division algebras whose centers are finite dimensional separable field extensions of the field K. If K is a perfect field --- for example a field of characteristic zero, or a finite field, or an algebraically closed field --- then every extension of K is separable. As a result, if K is a perfect field, separable algebras are the same as finite products of matrix algebras over division algebras whose centers are finite-dimensional field extensions of the field K. In other words, if K is a perfect field, there is no difference between a separable algebra over K and a finite-dimensional semisimple algebra over K.
There are a several equivalent characterizations of separable algebras. First, an algebra A is separable if and only if there exists an element
in such that
and ap = pa for all a in A. Such an element p is called a separability idempotent, since it satisfies . A generalized theorem of Maschke shows these this characterization of separable algebras is equivalent to the definition given above.
Second, an algebra A is separable if and only if it is projective when considered as a left module of in the usual way.
Third, an algebra A is separable if and only if it is flat when considered as a right module of in the usual (but perhaps not quite standard) way. See Aguiar's note below for more details.
Furthermore, a result of Eilenberg and Nakayama that any separable algebra can be given the structure of a symmetric Frobenius algebra. Since the underlying vector space of a Frobenius algebra is isomorphic to its dual, any Frobenius algebra is necessarily finite dimensional, and so the same is true for separable algebras.
A separable algebra is said to be strongly separable if there exists a separability idempotent that is symmetric, meaning
An algebra is strongly separable if and only if its trace form is nondegenerate, thus making the algebra into a special Frobenius algebra.
Read more about this topic: Separable Algebra
Famous quotes containing the words definition and/or properties:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)