A semistable elliptic curve may be described more concretely as an elliptic curve that has bad reduction only of multiplicative type. Suppose E is an elliptic curve defined over the rational number field Q. It is known that there is a finite, non-empty set S of prime numbers p for which E has bad reduction modulo p. The latter means that the curve Ep obtained by reduction of E to the prime field with p elements has a singular point. Roughly speaking, the condition of multiplicative reduction amounts to saying that the singular point is a double point, rather than a cusp. Deciding whether this condition holds is effectively computable by Tate's algorithm. Therefore in a given case it is decidable whether or not the reduction is semistable, namely multiplicative reduction at worst.
The semistable reduction theorem for E may also be made explicit: E acquires semistable reduction over the extension of F generated by the coordinates of the points of order 12.
Read more about this topic: Semistable Abelian Variety
Famous quotes containing the word curve:
“The years-heired feature that can
In curve and voice and eye
Despise the human span
Of durancethat is I;
The eternal thing in man,
That heeds no call to die.”
—Thomas Hardy (18401928)