A semistable elliptic curve may be described more concretely as an elliptic curve that has bad reduction only of multiplicative type. Suppose E is an elliptic curve defined over the rational number field Q. It is known that there is a finite, non-empty set S of prime numbers p for which E has bad reduction modulo p. The latter means that the curve Ep obtained by reduction of E to the prime field with p elements has a singular point. Roughly speaking, the condition of multiplicative reduction amounts to saying that the singular point is a double point, rather than a cusp. Deciding whether this condition holds is effectively computable by Tate's algorithm. Therefore in a given case it is decidable whether or not the reduction is semistable, namely multiplicative reduction at worst.
The semistable reduction theorem for E may also be made explicit: E acquires semistable reduction over the extension of F generated by the coordinates of the points of order 12.
Read more about this topic: Semistable Abelian Variety
Famous quotes containing the word curve:
“I have been photographing our toilet, that glossy enameled receptacle of extraordinary beauty.... Here was every sensuous curve of the human figure divine but minus the imperfections. Never did the Greeks reach a more significant consummation to their culture, and it somehow reminded me, in the glory of its chaste convulsions and in its swelling, sweeping, forward movement of finely progressing contours, of the Victory of Samothrace.”
—Edward Weston (18861958)