Semigroup - Group of Fractions

The group of fractions of a semigroup S is the group G = G(S) generated by the elements of S as generators and all equations xy=z which hold true in S as relations. This has a universal property for morphisms from S to a group. There is an obvious map from S to G(S) by sending each element of S to the corresponding generator.

An important question is to characterize those semigroups for which this map is an embedding. This need not always be the case: for example, take S to be the semigroup of subsets of some set X with set-theoretic intersection as the binary operation (this is an example of a semilattice). Since A.A = A holds for all elements of S, this must be true for all generators of G(S) as well: which is therefore the trivial group. It is clearly necessary for embeddability that S have the cancellation property. When S is commutative this condition is also sufficient and the Grothendieck group of the semigroup provides a construction of the group of fractions. The problem for non-commutative semigroups can be traced to the first substantial paper on semigroups, (Suschkewitsch 1928). Anatoly Maltsev gave necessary and conditions for embeddability in 1937.

Read more about this topic:  Semigroup

Famous quotes containing the words group of and/or group:

    With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.
    Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)

    We begin with friendships, and all our youth is a reconnoitering and recruiting of the holy fraternity they shall combine for the salvation of men. But so the remoter stars seem a nebula of united light, yet there is no group which a telescope will not resolve; and the dearest friends are separated by impassable gulfs.
    Ralph Waldo Emerson (1803–1882)