Relation To Direct Products
Suppose G is a semidirect product of the normal subgroup N and the subgroup H. If H is also normal in G, or equivalently, if there exists a homomorphism G → N which is the identity on N, then G is the direct product of N and H.
The direct product of two groups N and H can be thought of as the outer semidirect product of N and H with respect to φ(h) = idN for all h in H.
Note that in a direct product, the order of the factors is not important, since N × H is isomorphic to H × N. This is not the case for semidirect products, as the two factors play different roles.
Read more about this topic: Semidirect Product
Famous quotes containing the words relation to, relation, direct and/or products:
“You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.”
—Angela Carter (19401992)
“The proper study of mankind is man in his relation to his deity.”
—D.H. (David Herbert)
“Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements.”
—Rudolf Carnap (18911970)
“The reality is that zero defects in products plus zero pollution plus zero risk on the job is equivalent to maximum growth of government plus zero economic growth plus runaway inflation.”
—Dixie Lee Ray (b. 1924)