Semi-locally Simply Connected

In mathematics, specifically algebraic topology, the phrase semi-locally simply connected refers to a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group.

Most “nice” spaces such as manifolds and CW complexes are semi-locally simply connected, and topological spaces that do not satisfy this condition are considered somewhat pathological. The standard example of a non-semi-locally simply connected space is the Hawaiian earring.

Read more about Semi-locally Simply Connected:  Definition, Examples, Topology of Fundamental Group

Famous quotes containing the words simply and/or connected:

    I have said many times, and it is literally true, that there is absolutely nothing that could keep me in business, if my job were simply business to me. The human problems which I deal with every day—concerning employees as well as customers—are the problems that fascinate me, that seem important to me.
    Hortense Odlum (1892–?)

    The question of armaments, whether on land or sea, is the most immediately and intensely practical question connected with the future fortunes of nations and of mankind.
    Woodrow Wilson (1856–1924)