Self-similar Process - The Poisson Distribution

The Poisson Distribution

Before the heavy-tailed distribution is introduced mathematically, the Poisson process with a memoryless waiting-time distribution, used to model (among many things) traditional telephony networks, is briefly reviewed below.

Assuming pure-chance arrivals and pure-chance terminations leads to the following:

  • The number of call arrivals in a given time has a Poisson distribution, i.e.:

P(a)= \left ( \frac{\mu^a}{a!} \right )e^{-\mu},

where a is the number of call arrivals in time T, and is the mean number of call arrivals in time T. For this reason, pure-chance traffic is also known as Poisson traffic.

  • The number of call departures in a given time, also has a Poisson distribution, i.e.:

P(d)=\left(\frac{\lambda^d}{d!}\right)e^{-\lambda},

where d is the number of call departures in time T and is the mean number of call departures in time T.

  • The intervals, T, between call arrivals and departures are intervals between independent, identically distributed random events. It can be shown that these intervals have a negative exponential distribution, i.e.:

P=e^{-t/h},\,

where h is the mean holding time (MHT).

Read more about this topic:  Self-similar Process

Famous quotes containing the word distribution:

    My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.
    Rutherford Birchard Hayes (1822–1893)