The Poisson Distribution
Before the heavy-tailed distribution is introduced mathematically, the Poisson process with a memoryless waiting-time distribution, used to model (among many things) traditional telephony networks, is briefly reviewed below.
Assuming pure-chance arrivals and pure-chance terminations leads to the following:
- The number of call arrivals in a given time has a Poisson distribution, i.e.:
where a is the number of call arrivals in time T, and is the mean number of call arrivals in time T. For this reason, pure-chance traffic is also known as Poisson traffic.
- The number of call departures in a given time, also has a Poisson distribution, i.e.:
where d is the number of call departures in time T and is the mean number of call departures in time T.
- The intervals, T, between call arrivals and departures are intervals between independent, identically distributed random events. It can be shown that these intervals have a negative exponential distribution, i.e.:
where h is the mean holding time (MHT).
Read more about this topic: Self-similar Process
Famous quotes containing the word distribution:
“Classical and romantic: private language of a family quarrel, a dead dispute over the distribution of emphasis between man and nature.”
—Cyril Connolly (19031974)