Self-incompatibility in Plants - Mechanisms of Self-incompatibility

Mechanisms of Self-incompatibility

The best studied mechanisms of SI act by inhibiting the germination of pollen on stigmas, or the elongation of the pollen tube in the styles. These mechanisms are based on protein-protein interactions, each mechanism being controlled by a single locus termed S, which has many different alleles in the species population. Despite their similar morphological and genetic manifestations, these mechanisms have evolved independently, and are based on different cellular components; therefore, each mechanism has its own, unique S-genes.

The S-locus contains two basic protein coding regions - one expressed in the pistil, and the other in the anther and/or pollen (referred to as the female and male determinants, respectively). Because of their physical proximity, these are genetically linked, and are inherited as a unit. The units are called S-haplotypes. The translation products of the two regions of the S-locus are two proteins which, by interacting with one another, lead to the arrest of pollen germination and/or pollen tube elongation, and thereby generate an SI response, preventing fertilization. However, when a female determinant interacts with a male determinant of a different haplotype, no SI is created, and fertilization ensues. This is a simplistic description of the general mechanism of SI, which is more complicated, and in some species the S-haplotype contains more than two protein coding regions.

Following is a detailed description of the different known mechanisms of SI in plants.

Read more about this topic:  Self-incompatibility In Plants