Selection Algorithm - Lower Bounds

Lower Bounds

In The Art of Computer Programming, Donald E. Knuth discussed a number of lower bounds for the number of comparisons required to locate the t smallest entries of an unorganized list of n items (using only comparisons). There is a trivial lower bound of n − 1 for the minimum or maximum entry. To see this, consider a tournament where each game represents one comparison. Since every player except the winner of the tournament must lose a game before we know the winner, we have a lower bound of n − 1 comparisons.

The story becomes more complex for other indexes. We define as the minimum number of comparisons required to find the t smallest values. Knuth references a paper published by S. S. Kislitsyn, which shows an upper bound on this value:

This bound is achievable for t=2 but better, more complex bounds are known for larger t.

Read more about this topic:  Selection Algorithm

Famous quotes containing the word bounds:

    Firmness yclept in heroes, kings and seamen,
    That is, when they succeed; but greatly blamed
    As obstinacy, both in men and women,
    Whene’er their triumph pales, or star is tamed —
    And ‘twill perplex the casuist in morality
    To fix the due bounds of this dangerous quality.
    George Gordon Noel Byron (1788–1824)