Seismic Refraction

Seismic refraction is a geophysical principle (see refraction) governed by Snell's Law. Used in the fields of engineering geology, geotechnical engineering and exploration geophysics, seismic refraction traverses (seismic lines) are performed using a seismograph(s) and/or geophone(s), in an array and an energy source. The seismic refraction method utilizes the refraction of seismic waves on geologic layers and rock/soil units in order to characterize the subsurface geologic conditions and geologic structure.

The methods depend on the fact that seismic waves have differing velocities in different types of soil (or rock): in addition, the waves are refracted when they cross the boundary between different types (or conditions) of soil or rock. The methods enable the general soil types and the approximate depth to strata boundaries, or to bedrock, to be determined.

Read more about Seismic Refraction:  P-Wave Refraction (aka Compression Wave Refraction), S-Wave Refraction (aka Shear Wave Refraction), Two Horizontal Layers., Several Horizontal Layers., Inversion Methods

Famous quotes containing the word seismic:

    Most near, most dear, most loved and most far,
    Under the window where I often found her
    Sitting as huge as Asia, seismic with laughter,
    George Barker (b. 1913)