Positive Orbifold Euler Characteristic
The normalized symbols of Seifert fibrations with positive orbifold Euler characteristic are given in the list below. The Seifert manifolds often have many different Seifert fibrations. They have a spherical Thurston geometry if the fundamental group is finite, and an S2×R Thurston geometry if the fundamental group is infinite. Equivalently, the geometry is S2×R if the manifold is non-orientable or if b + Σbi/ai= 0, and spherical geometry otherwise.
{b; (o1, 0);} (b integral) is S2×S1 for b=0, otherwise a lens space L(b,1). ({1; (o1, 0);} =L(1,1) is the 3-sphere.)
{b; (o1, 0);(a1, b1)} (b integral) is the Lens space L(ba1+b1,a1).
{b; (o1, 0);(a1, b1), (a2, b2)} (b integral) is S2×S1 if ba1a2+a1b2+a2b1 = 0, otherwise the lens space L(ba1a2+a1b2+a2b1, ma2+nb2) where ma1 − n(ba1 +b1) = 1.
{b; (o1, 0);(2, 1), (2, 1), (a3, b3)} (b integral) This is the Prism manifold with fundamental group of order 4a3|(b+1)a3+b3| and first homology group of order 4|(b+1)a3+b3|.
{b; (o1, 0);(2, 1), (3, b2), (3, b3)} (b integral) The fundamental group is a central extension of the tetrahedral group of order 12 by a cyclic group.
{b; (o1, 0);(2, 1), (3, b2), (4, b3)} (b integral) The fundamental group is the product of a cyclic group of order |12b+6+4b2 + 3b3| and a double cover of order 48 of the octahedral group of order 24.
{b; (o1, 0);(2, 1), (3, b2), (5, b3)} (b integral) The fundamental group is the product of a cyclic group of order m=|30b+15+10b2 +6b3| and the order 120 perfect double cover of the icosahedral group. The manifolds are quotients of the Poincaré sphere by cyclic groups of order m. In particular {−1; (o1, 0);(2, 1), (3, 1), (5, 1)} is the Poincaré sphere.
{b; (n1, 1);} (b is 0 or 1.) These are the non-orientable 3-manifolds with S2×R geometry. If b is even this is homeomorphic to the projective plane times the circle, otherwise it is homeomorphic to a surface bundle associated to an orientation reversing automorphism of the 2-sphere.
{b; (n1, 1);(a1, b1)} (b is 0 or 1.) These are the non-orientable 3-manifolds with S2×R geometry. If ba1+b1 is even this is homeomorphic to the projective plane times the circle, otherwise it is homeomorphic to a surface bundle associated to an orientation reversing automorphism of the 2-sphere.
{b; (n2, 1);} (b integral.) This is the Prism manifold with fundamental group of order 4|b| and first homology group of order 4, except for b=0 when it is a sum of two copies of real projective space, and |b|=1 when it is the lens space with fundamental group of order 4.
{b; (n2, 1);(a1, b1)} (b integral.) This is the (unique) Prism manifold with fundamental group of order 4a1|ba1 + b1| and first homology group of order 4a1.
Read more about this topic: Seifert Fiber Space
Famous quotes containing the word positive:
“It is easy and dismally enervating to think of opposition as merely perverse or actually evilfar more invigorating to see it as essential for honing the mind, and as a positive good in itself. For the day that moral issues cease to be fought over is the day the word human disappears from the race.”
—Jill Tweedie (b. 1936)