Fundamental Group
The fundamental group of M fits into the exact sequence
where π1(B) is the orbifold fundamental group of B (which is not the same as the fundamental group of the underlying topological manifold). The image of group π1(S1) is cyclic, normal, and generated by the element h represented by any regular fiber, but the map from π1(S1) to π1(M) is not always injective.
The fundamental group of M has the following presentation by generators and relations:
B orientable:
where ε is 1 for type o1, and is −1 for type o2.
B non-orientable:
where εi is 1 or −1 depending on whether the corresponding generator vi preserves or reverses orientation of the fiber. (So εi are all 1 for type n1, all −1 for type n2, just the first one is one for type n3, and just the first two are one for type n4.)
Read more about this topic: Seifert Fiber Space
Famous quotes containing the words fundamental and/or group:
“The fundamental laws of physics do not describe true facts about reality. Rendered as descriptions of facts, they are false; amended to be true, they lose their explanatory force.”
—Nancy Cartwright (b. 1945)
“The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.”
—George Mikes (b. 1912)