The Statement of Seiberg Duality
Seiberg duality is an equivalence of the IR fixed points in an N=1 theory with SU(Nc) as the gauge group and Nf flavors of fundamental chiral multiplets and Nf flavors of antifundamental chiral multiplets in the chiral limit (no bare masses) and an N=1 chiral QCD with Nf-Nc colors and Nf flavors, where Nc and Nf are positive integers satisfying
-
- .
A stronger version of the duality relates not only the chiral limit but also the full deformation space of the theory. In the special case in which
the IR fixed point is a nontrivial interacting superconformal field theory. For a superconformal field theory, the anomalous scaling dimension of a chiral superfield where R is the R-charge. This is an exact result.
The dual theory contains a fundamental "meson" chiral superfield M which is color neutral but transforms as a bifundamental under the flavor symmetries.
SQCD | dual theory | |
---|---|---|
color gauge group | ||
global internal symmetries | ||
chiral superfields | ||
The dual theory contains the superpotential .
Read more about this topic: Seiberg Duality
Famous quotes containing the word statement:
“Children should know there are limits to family finances or they will confuse we cant afford that with they dont want me to have it. The first statement is a realistic and objective assessment of a situation, while the other carries an emotional message.”
—Jean Ross Peterson (20th century)