Second Derivative - Limit

Limit

It is possible to write a single limit for the second derivative:

The expression on the right can be written as a difference quotient of difference quotients:

This limit can be viewed as a continuous version of the second difference for sequences.

Please note that the existence of the above limit does not mean that the function has a second derivative. The limit above just give a possibility for calculating the second derivative but does not provide a definition. As a counterexample look on the sign function which is defined through

\sgn(x) = \begin{cases}
-1 & \text{if } x < 0, \\
0 & \text{if } x = 0, \\
1 & \text{if } x > 0. \end{cases}

The sign function is not continuous at null and therefore the second derivative for does not exist. But the above limit exists for :

\begin{align}
\lim_{h \to 0} \frac{\sgn(0+h) - 2\sgn(0) + \sgn(0-h)}{h^2} &= \lim_{h \to 0} \frac{1 - 2\cdot 0 + (-1)}{h^2} \\
&= \lim_{h \to 0} \frac{0}{h^2} \\
&= 0 \end{align}

Read more about this topic:  Second Derivative

Famous quotes containing the word limit:

    Today, the notion of progress in a single line without goal or limit seems perhaps the most parochial notion of a very parochial century.
    Lewis Mumford (1895–1990)

    Greatness collapses of itself: such limit the gods have set to the growth of prosperous states.
    Marcus Annaeus Lucan (39–65)

    Moreover, the universe as a whole is infinite, for whatever is limited has an outermost edge to limit it, and such an edge is defined by something beyond. Since the universe has no edge, it has no limit; and since it lacks a limit, it is infinite and unbounded. Moreover, the universe is infinite both in the number of its atoms and in the extent of its void.
    Epicurus (c. 341–271 B.C.)