Second-order Logic - Relation To Computational Complexity

Relation To Computational Complexity

The expressive power of various forms of second-order logic on finite structures is intimately tied to computational complexity theory. The field of descriptive complexity studies which computational complexity classes can be characterized by the power of the logic needed to express languages (sets of finite strings) in them. A string w = w1···wn in a finite alphabet A can be represented by a finite structure with domain D = {1,...,n}, unary predicates Pa for each aA, satisfied by those indices i such that wi = a, and additional predicates which serve to uniquely identify which index is which (typically, one takes the graph of the successor function on D or the order relation <, possibly with other arithmetic predicates). Conversely, the table of any finite structure can be encoded by a finite string.

With this identification, we have the following characterizations of variants of second-order logic over finite structures:

  • REG (the set of regular languages) is definable by monadic, second-order formulas (Büchi's theorem, 1960)
  • NP is the set of languages definable by existential, second-order formulas (Fagin's theorem, 1974).
  • co-NP is the set of languages definable by universal, second-order formulas.
  • PH is the set of languages definable by second-order formulas.
  • PSPACE is the set of languages definable by second-order formulas with an added transitive closure operator.
  • EXPTIME is the set of languages definable by second-order formulas with an added least fixed point operator.

Relationships among these classes directly impact the relative expressiveness of the logics over finite structures; for example, if PH = PSPACE, then adding a transitive closure operator to second-order logic would not make it any more expressive over finite structures.

Read more about this topic:  Second-order Logic

Famous quotes containing the words relation to, relation and/or complexity:

    The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.
    Terri Apter (20th century)

    Light is meaningful only in relation to darkness, and truth presupposes error. It is these mingled opposites which people our life, which make it pungent, intoxicating. We only exist in terms of this conflict, in the zone where black and white clash.
    Louis Aragon (1897–1982)

    It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.
    Elaine Heffner (20th century)