Second-order Arithmetic - Models of Second-order Arithmetic

Models of Second-order Arithmetic

Recall that we view second-order arithmetic as a theory in first-order predicate calculus. Thus a model of the language of second-order arithmetic consists of a set M (which forms the range of individual variables) together with a constant 0 (an element of M), a function S from M to M, two binary operations + and · on M, a binary relation < on M, and a collection D of subsets of M, which is the range of the set variables. By omitting D we obtain a model of the language of first order arithmetic.

When D is the full powerset of M, the model is called a full model. The use of full second-order semantics is equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms of second-order arithmetic have only one full model. This follows from the fact that the axioms of Peano arithmetic with the second-order induction axiom have only one model under second-order semantics.

When M is the usual set of natural numbers with its usual operations, is called an ω-model. In this case we may identify the model with D, its collection of sets of naturals, because this set is enough to completely determine an ω-model.

The unique full model, which is the usual set of natural numbers with its usual structure and all its subsets, is called the intended or standard model of second-order arithmetic.

Read more about this topic:  Second-order Arithmetic

Famous quotes containing the words models of, models and/or arithmetic:

    Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.
    Marshall McLuhan (1911–1980)

    Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.
    Eda Le Shan (20th century)

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)