Scott Continuity

Scott Continuity

In mathematics, given two partially ordered sets P and Q a function between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema, i.e. if for every directed subset D of P with supremum in P its image has a supremum in Q, and that supremum is the image of the supremum of D: sup f(D) = f(sup D).

A subset O of a partially ordered set P is called Scott-open if it is an upper set and if it is inaccessible by directed joins, i.e. if all directed sets D with supremum in O have non-empty intersection with O. The Scott-open subsets of a partially ordered set P form a topology on P, the Scott topology. A function between partially ordered sets is Scott-continuous if and only if it is continuous with respect to the Scott topology.

The Scott topology was first defined by Dana Scott for complete lattices and later defined for arbitrary partially ordered sets.

Scott-continuous functions show up in the study of models for lambda calculi and the denotational semantics of computer programs.

Read more about Scott Continuity:  Properties, Examples

Famous quotes containing the words scott and/or continuity:

    Action is character.
    —F. Scott Fitzgerald (1896–1940)

    Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.
    Erik H. Erikson (1904–1994)