Scientific Community Metaphor - Qualities of Scientific Research

Qualities of Scientific Research

Scientific research depends critically on monotonicity, concurrency, commutativity, and pluralism to propose, modify, support, and oppose scientific methods, practices, and theories. Quoting from Carl Hewitt, Scientific Community Metaphor systems have characteristics of monotonicity, concurrency, commutativity, pluralism, skepticism and provenance.

monotonicity: Once something is published it cannot be undone. Scientists publish their results so they are available to all. Published work is collected and indexed in libraries. Scientists who change their mind can publish later articles contradicting earlier ones.
concurrency: Scientists can work concurrently, overlapping in time and interacting with each other.
commutativity: Publications can be read regardless of whether they initiate new research or become relevant to ongoing research. Scientists who become interested in a scientific question typically make an effort to find out if the answer has already been published. In addition they attempt to keep abreast of further developments as they continue their work.
pluralism: Publications include heterogeneous, overlapping and possibly conflicting information. There is no central arbiter of truth in scientific communities.
skepticism: Great effort is expended to test and validate current information and replace it with better information.
provenance: The provenance of information is carefully tracked and recorded.

The above characteristics are limited in real scientific communities. Publications are sometimes lost or difficult to retrieve. Concurrency is limited by resources including personnel and funding. Sometimes it is easier to rederive a result than to look it up. Scientists only have so much time and energy to read and try to understand the literature. Scientific fads sometimes sweep up almost everyone in a field. The order in which information is received can influence how it is processed. Sponsors can try to control scientific activities. In Ether the semantics of the kinds of activity described in this paragraph are governed by the Actor model.

Scientific research includes generating theories and processes for modifying, supporting, and opposing these theories. Karl Popper called the process "conjectures and refutations", which although expressing a core insight, has been shown to be too restrictive a characterization by the work of Michel Callon, Paul Feyerabend, Elihu M. Gerson, Mark Johnson, Thomas Kuhn, George Lakoff, Imre Lakatos, Bruno Latour, John Law, Susan Leigh Star, Anselm Strauss, Lucy Suchman, Ludwig Wittgenstein, etc.. Three basic kinds of participation in Ether are proposing, supporting, and opposing. Scientific communities are structured to support competition as well as cooperation.

These activities affect the adherence to approaches, theories, methods, etc. in scientific communities. Current adherence does not imply adherence for all future time. Later developments will modify and extend current understandings. Adherence is a local rather than a global phenomenon. No one speaks for the scientific community as a whole.

Opposing ideas may coexist in communities for centuries. On rare occasions a community reaches a breakthrough that clearly decides an issue previously muddled.

Read more about this topic:  Scientific Community Metaphor

Famous quotes containing the words qualities of, qualities, scientific and/or research:

    The werewolf is neither man nor wolf, but a satanic creature with the worst qualities of both.
    John Colton (1886–1946)

    Pedants make a great rout about criticism, as if it were a science of great depth, and required much pains and knowledge—criticism however is only the result of good sense, taste and judgment—three qualities that indeed seldom are found together, and extremely seldom in a pedant, which most critics are.
    Horace Walpole (1717–1797)

    It’s an old trick now, God knows, but it works every time. At the very moment women start to expand their place in the world, scientific studies deliver compelling reasons for them to stay home.
    Mary Kay Blakely (20th century)

    Feeling that you have to be the perfect parent places a tremendous and completely unnecessary burden on you. If we’ve learned anything from the past half-century’s research on child development, it’s that children are remarkably resilient. You can make lots of mistakes and still wind up with great kids.
    Lawrence Kutner (20th century)