Statement
Schwarz Lemma. Let D = {z : |z| < 1} be the open unit disk in the complex plane C centered at the origin and let f : D → D be a holomorphic map such that f(0) = 0. Then, |f(z)| ≤ |z| for all z in D and |f′(0)| ≤ 1. Moreover, if |f(z)| = |z| for some non-zero z or |f′(0)| = 1, then f(z) = az for some a in C with |a| = 1.
Note. Some authors replace the condition f : D → D with |f(z)| ≤ 1 for all z in D (where f is still holomorphic in D). The two versions can be shown to be equivalent through an application of the maximum modulus principle.
Read more about this topic: Schwarz Lemma
Famous quotes containing the word statement:
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)
“The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.”
—Ralph Waldo Emerson (18031882)
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)