Schwarz Lemma - Proof

Proof

The proof is a straightforward application of the maximum modulus principle on the function

g(z) = \begin{cases} \frac{f(z)}{z}\, & \mbox{if } z \neq 0 \\ f'(0) & \mbox{if } z = 0,
\end{cases}

which is holomorphic on the whole of D, including at the origin (because f is differentiable at the origin and fixes zero). Now if Dr = {z : |z| ≤ r} denotes the closed disk of radius r centered at the origin, then the maximum modulus principle implies that, for r < 1, given any z in Dr, there exists zr on the boundary of Dr such that

As r → 1 we get |g(z)| ≤ 1.

Moreover, suppose that |f(z)| = |z| for some non-zero z in D, or |f′(0)| = 1. Then, |g(z)| = 1 at some point of D. So by the maximum modulus principle, g(z) is equal to a constant a such that |a| = 1. Therefore, f(z) = az, as desired.

Read more about this topic:  Schwarz Lemma

Famous quotes containing the word proof:

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutation—a proof of unwillingness to do much, even where there is a necessity of doing something.
    Samuel Johnson (1709–1784)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)