Proof
The proof is a straightforward application of the maximum modulus principle on the function
which is holomorphic on the whole of D, including at the origin (because f is differentiable at the origin and fixes zero). Now if Dr = {z : |z| ≤ r} denotes the closed disk of radius r centered at the origin, then the maximum modulus principle implies that, for r < 1, given any z in Dr, there exists zr on the boundary of Dr such that
As r → 1 we get |g(z)| ≤ 1.
Moreover, suppose that |f(z)| = |z| for some non-zero z in D, or |f′(0)| = 1. Then, |g(z)| = 1 at some point of D. So by the maximum modulus principle, g(z) is equal to a constant a such that |a| = 1. Therefore, f(z) = az, as desired.
Read more about this topic: Schwarz Lemma
Famous quotes containing the word proof:
“The proof of a poet is that his country absorbs him as affectionately as he has absorbed it.”
—Walt Whitman (18191892)
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)