Schur's Inequality

In mathematics, Schur's inequality, named after Issai Schur, establishes that for all non-negative real numbers x, y, z and a positive number t,

with equality if and only if x = y = z or two of them are equal and the other is zero. When t is an even positive integer, the inequality holds for all real numbers x, y and z.

When, the following well-known special case can be derived:

Read more about Schur's Inequality:  Proof, Extension

Famous quotes containing the word inequality:

    Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.
    Anton Pavlovich Chekhov (1860–1904)