Sampling (signal Processing) - Theory

Theory

See also: Nyquist–Shannon sampling theorem

Sampling can be done for functions varying in space, time, or any other dimension, and similar results are obtained in two or more dimensions.

For functions that vary with time, let s(t) be a continuous function (or "signal") to be sampled, and let sampling be performed by measuring the value of the continuous function every T seconds, which is called the sampling interval. Thus, the sampled function is given by the sequence:

s(nT), for integer values of n.

The sampling frequency or sampling rate fs is defined as the number of samples obtained in one second (samples per second), thus fs = 1/T.

Reconstructing a continuous function from samples is done by interpolation algorithms. The Whittaker–Shannon interpolation formula is mathematically equivalent to an ideal lowpass filter whose input is a sequence of Dirac delta functions that are modulated (multiplied) by the sample values. When the time interval between adjacent samples is a constant (T), the sequence of delta functions is called a Dirac comb. Mathematically, the modulated Dirac comb is equivalent to the product of the comb function with s(t). That purely mathematical function is often loosely referred to as the sampled signal.

Most sampled signals are not simply stored and reconstructed. But the fidelity of a theoretical reconstruction is a customary measure of the effectiveness of sampling. That fidelity is reduced when s(t) contains frequency components higher than fs/2 Hz, which is known as the Nyquist frequency of the sampler. Therefore s(t) is usually the output of a lowpass filter, functionally known as an "anti-aliasing" filter. Without an anti-aliasing filter, frequencies higher than the Nyquist frequency will influence the samples in a way that is misinterpreted by the interpolation process. For details, see Aliasing.

Read more about this topic:  Sampling (signal Processing)

Famous quotes containing the word theory:

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)

    The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.
    Rheta Childe Dorr (1866–1948)

    No theory is good unless it permits, not rest, but the greatest work. No theory is good except on condition that one use it to go on beyond.
    André Gide (1869–1951)