Sahlqvist Formula
In modal logic, Sahlqvist formulas are a certain kind of modal formula with remarkable properties. The Sahlqvist correspondence theorem states that every Sahlqvist formula is canonical, and corresponds to a first-order definable class of Kripke frames.
Sahlqvist's definition characterizes a decidable set of modal formulas with first-order correspondents. Since it is undecidable, by Chagrova's theorem, whether an arbitrary modal formula has a first-order correspondent, there are formulas with first-order frame conditions that are not Sahlqvist (see the examples below). Hence Sahlqvist formulas define only a (decidable) subset of modal formulas with first-order correspondents.
Read more about Sahlqvist Formula: Definition, Examples of Sahlqvist Formulas, Examples of Non-Sahlqvist Formulas, Kracht's Theorem
Famous quotes containing the word formula:
“In the most desirable conditions, the child learns to manage anxiety by being exposed to just the right amounts of it, not much more and not much less. This optimal amount of anxiety varies with the childs age and temperament. It may also vary with cultural values.... There is no mathematical formula for calculating exact amounts of optimal anxiety. This is why child rearing is an art and not a science.”
—Alicia F. Lieberman (20th century)