Russell's Paradox - Informal Presentation

Informal Presentation

Let us call a set "abnormal" if it is a member of itself, and "normal" otherwise. For example, take the set of all geometrical squares. That set is not itself a square, and therefore is not a member of the set of all squares. So it is "normal". On the other hand, if we take the complementary set that contains all non-squares, that set is itself not a square and so should be one of its own members. It is "abnormal".

Now we consider the set of all normal sets, R. Determining whether R is normal or abnormal is impossible: If R were a normal set, it would be contained in the set of normal sets (itself), and therefore be abnormal; and if R were abnormal, it would not be contained in the set of all normal sets (itself), and therefore be normal. This leads to the conclusion that R is neither normal nor abnormal: Russell's paradox.

Read more about this topic:  Russell's Paradox

Famous quotes containing the words informal and/or presentation:

    We are now a nation of people in daily contact with strangers. Thanks to mass transportation, school administrators and teachers often live many miles from the neighborhood schoolhouse. They are no longer in daily informal contact with parents, ministers, and other institution leaders . . . [and are] no longer a natural extension of parental authority.
    James P. Comer (20th century)

    He uses his folly like a stalking-horse, and under the presentation of that he shoots his wit.
    William Shakespeare (1564–1616)