Row Echelon Form - Transformation To Row Echelon Form

Transformation To Row Echelon Form

By means of a finite sequence of elementary row operations, called Gaussian elimination, any matrix can be transformed to row echelon form. Since elementary row operations preserve the row space of the matrix, the row space of the row echelon form is the same as that of the original matrix.

The resulting echelon form is not unique; for example, any multiple of a matrix in echelon form is also in echelon form. However, it is the case that every matrix has a unique reduced row echelon form. This means that the nonzero rows of the reduced row echelon form are the unique reduced row echelon generating set for the row space of the original matrix.

Read more about this topic:  Row Echelon Form

Famous quotes containing the words row and/or form:

    When people ask me how I develop recipes, I have to respond: “travelling, eating, watching, experimenting, and constantly asking myself: ‘Do I want to eat this dish again?’” Will I yearn for it some evening when I’m hungry? Will I remember it in six months’ time? In a year? Five years from now?
    Paula Wolfert, U.S. cookbook writer. Paula Wolfert’s World of Food, Introduction, Harper and Row (1988)

    The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Child’s play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.
    Erik H. Erikson (20th century)